Jumat, 04 Mei 2012

TEKNIK ENCODING

A. Teknik Encoding
1. Non return to zero level (NRZ-L) : aitu suatu kode dimana tegangan negatif dipakai untuk mewakili suatu binary dan tegangan positif dipakai untuk mewakili binary lainnya.
• Dua tegangan yang berbeda antara bit 0 dan bit 1
• Tegangan konstan selama interval bit
• Tidak ada transisi yaitu tegangan no return to zero
Contoh:
• Lebih sering, tegangan negatif untuk satu hasil dan tegangan positif untuk yang lain
• Ini adalah NRZ-L
2. Nonreturn to Zero Inverted (NRZI ): yaitu suatu kode dimana suatu transisi (low ke high atau high ke low) pada awal suatu bit time akan dikenal sebagai binary ’1′ untuk bit time tersebut; tidak ada transisi berarti binary ’0′. Sehingga NRZI merupakan salah satu contoh dari differensial encoding.
• Nonreturn to Zero Inverted (NRZI) dalam kesatuan
• Pulsa tegangan konstan untuk durasi bit
• Data dikodekan / diterjemahkan sebagai kehadiran(ada) atau ketiadaan sinyal transisi saat permulaan bit time
• Transisi (dari rendah ke tinggi atau tinggi ke rendah) merupakan biner 1
• Tidak ada transisi untuk biner 0
• Sebagai contoh encoding differential

3. Bipolar with 8-Zeros Substitution (B8ZS) yaitu suatu kode dimana :
• jika terjadi oktaf dari semua nol dan pulsa tegangan terakhir yang mendahului oktaf ini adalah positif, maka 8 nol dari oktaf tersebut di-encode sebagai 000+ -0- +
• jika terjadi oktaf dari semua nol dan pulsa tegangan terakhir yang mendahului oktaf ini adalah negatif, maka 8 nol dari oktaf tersebut di-encode sebagai 000-+0+ -.
• Penggantian Bipolar With 8 Zeros
• Didasarkan pada bipolar-AMI
• Jika octet pada semua zero dan pulsa terakhir tegangan yang terdahulu adalah encode positif sebagai 000+-0-+
• Jika octet pada semua zero dan pulsa terakhir tegangan yang terdahulu adalah encode negatif sebagai 000-+0+-
• Karena dua pelanggaran pada kode AMI
• Tidak mungkin untuk terjadi seperti hasil noise
• Receiver mendeteksi dan menerjemahkan seperti octed pada semua zero
• Penggunaan Scrambling untuk menggantikan rangkaian yang menghasilkan tegangan konstan.
• Rangkaian Filling
o Harus cukup menghasilkan transisi untuk sinkronisasi
o Harus dapat diakui oleh receiver dan digantikan dengan yang asli
o Panjang sama dengan yang asli
• Tidak ada komponen dc
• Tidak ada rangkaian panjang pada saluran sinyal level zero
• Tidak ada penurunan pada kecepatan data
• Kemampuan pendeteksian error
4. High-density bipolar-3 zeros (HDB3):yaitu suatu kode dimana menggantikan stringstring dari 4 nol dengan rangkaian yang mengandung satu atau dua pulsa atau disebut kode violation, jika violation terakhir positive maka violation ini pasti negative dan sebaliknya (lihat tabel).
• Kepadatan tinggi Bipolar 3 Zeros
• Didasarkan pada bipolar-AMI
• String pada empat zero digantikan dengan satu atau dua pulsa

B. Pendeteksi Error
1. Bit Parity
Deteksi bit error yang paling sederhana parity bit pada akhir tiap word dalam frame. Terdapat dua jenis parity bit ini :
• Even parity : jumlah dari binary '1' yang genap --> dipakai untuk transmisi asynchronous.
• Odd parity : jumlah dari binary '1' yang ganjil --> dipakai untuk transmisi synchronous.
Atau menggunakan operasi exclusive-OR dari bit-bit tersebut dimana akan menghasilkan binary '0' untuk even parity dan menghasilkan binary '1' untuk odd parity.
Catatan :
• exclusive-OR dari 2 digit binary adalah 0 bila kedua digitnya adalah 0 atau keduanya = 1; jika digitnya beda maka hasilnya = 1.
Problem dari parity bit :
• Impulse noise yang cukup panjang merusak lebih dari satu bit, pada data rate yang tinggi.
2. CYCLIC REDUNDANCY CHECKS (CRC)
Diberikan suatu k-bit frame atau message, transmitter membentuk serangkaian n-bit, yang dikenal sebagai frame check sequence (FCS). Jadi frame yang dihasilkan terdiri dari k+n bits. Receiver kemudian membagi frame yang datang dengan beberapa angka dan jika tidak ada remainder (sisa) dianggap tidak ada error.
Beberapa cara yang menjelaskan prosedur diatas, yaitu :
a. Modulo 2 arithmetic
Menggunakan penjumlahan binary dengan tanpa carry, dimana hanya merupakan operasi exclusive-OR.
b. Polynomials
Dalam bentuk variabel x dengan koef isien-koefisien binary. Koefisien-koefisien tersebut berhubungan dengan bit -bit dalam binary sehingga proses CRC-nya dapat dijabarkan sebagai :
1. X M(X) = Q(X) + R(X)
--------- ---------------
P(X) P(X)
2. T(X) = X M(X)+ R(X)
Error E(X) hanya tidak akan terdeteksi bila dapat dibagi dengan P(X). Error-error yang dapat dideteksi yang tidak dapat dibagi oleh P(X) :
 Semua error bit tunggal.
 Semua error bit ganda, sepanjang P(X) mempunyai faktor paling sedikit 3 syarat.
 Jumlah error genap apapun, sepanjang P(X) mengandung faktor (X + 1).
 Burst error apapun dengan panjang burst lebih kecil daripada panjang FCS.
 Burst error yang paling besar.
C. Automatic Repeat Request (ARQ)
1. Stop-and-Wait ARQ
Stop-and-Wait ARQ didasarkan atas teknik flow control stop-and-wait. Stasiun source mentransmisikan sebuah frame tunggal dan kemudian harus menunggu balasan berupa acknowledgement (ACK). Tidak ada frame yang dikirim sampai jawaban dari stasiun tujuan tiba di stasiun sumber.

Ada dua jenis kesalahan yang dapat terjadi. Pertama, frame yang tiba di tujuan bisa mengalami kerusakan. Receiver mendeteksi kerusakan tersebut dengan menggunakan teknik pendeteksian kesalahan yang berkaitan dengan pembuangan frame lebih awal. Untuk menghitung kemungkinan ini, stasiun sumber dilengkapi dengan sebuah pencatat waktu. Setelah frame ditransmisikan/stasiun sumber menunggu balasan. Bila tidak ada balasan yang diterima sampai waktu yang ditentukan pencatat habis, maka akan dikirimkan frame yang sama. perhatikan bahwa metode ini mengharuskan transmitter mempertahankan tiruan frame yang ditransmisikan sampai balasan diterima oleh frame tersebut.

Jenis kesalahan yang kedua adalah kerusakan pada balasan. Amati situasi berikut. Stasiun A mengirim, sebuah frame. Frame ini diterima dengan baik oleh stasiun B, yang meresponnya dengan memberi balasan (ACK). ACK mengalami kerusakan saat singgah dan tidak diakui oleh A, yang karenanya keluar dari jalur waktu dan kembali mengirim frame yang sama. Duplikat frame ini tiba dan diterima oleh B. Dengan begitu B menerima dua duplikat frame yang sama seolah-olah keduanya terpisah. Untuk mengatasi problem ini, frame bergantian diberi label 0 atau 1, dan balasan positifnya dalam bentuk ACK 0 dan ACK 1. Sesuai dengan aturan jendela penggeseran, ACK 0 membalas penerimaan frame bernomor 1 dan menunjukkan bahwa receiver siap untuk frame bemomor 0.

Gambar diatas dalam posting ini memberi contoh penggunaan stop-and-wait ARQ, menunjukkan transmisi deretan frame dari sumber A menuju tujuan B. Gambar tersebut juga menunjukkan kedua jenis kesalahan yang baru saja digambarkan. Frame ketiga yang ditransmisikan oleh A hilang atau rusak dan karenanya tidak ada ACK yang dikembalikan oleh B. A mengalami time out dan kembali mentransn-dsikan frame yang sama. Saat B menerima dua frame dalam sebuah barisan dengan label yang sama, B membuang frame kedua namun mengirimkan ACK0 kembah ke masing-masing stasiun.

Kelebihan stop-and-wait ARQ adalah kesederhanaannya. Sedang kekurangannya, dibahas di bagian flow control, karena stop-and-wait ARQ ini merupakan mekanisme yang tidak efisien. Oleh karena itu teknik kontrol arus sliding window dapat diadaptasikan agar diperoleh pengunaan jalur yang lebih efisien lagi; dalam konteks ini, kadang-kadang disebut juga dengan ARQ yang kontinyu.
 Source mengirimkan frame tunggal
 Wait untuk ACK
 Jika frame yang diterima rusak, dibuang
a. Transmitter menjalani timeout
b. Jika tidak ada ACK selama timeout, kirim ulang
 Jika ACK rusak,transmitter tidak akan mengenalinya
a. Transmitter akan mengirim ulang
b. Receiver mengambil dua copy dari frame
c. Menggunakan ACK0 dan ACK1
2. Go-Back-N ARQ
Bentuk pengkontrolan kesalahan didasarkan atas teknik kontrol arus sliding window yang biasa disebut juga dengan Go-back-N ARQ. Dalam metode ini, stasiun bisa mengirim deretan frame yang diurutkan berdasarkan suatu modulo bilangan. Jumlah frame balasan yang ada ditentukan oleh ukuran jendela, menggunakan teknik kontrol arus jendela penggeseran. Bila tidak terjadi suatu. kesalahan, stasiun tujuan akan membalas (RR = Receive Ready, atau piggybacked Acknowledgement) frame yang datang seperti biasa. Bila stasiun tujuan mendeteksi suatu kesalahan pada sebuah frame, stasiunt tujuan mengirim balasan negatif (REJ = reject) untuk frame tersebut. Stasiun tujuan kemudian membuang frame itu dan semua frame-frame yang nantinya akan datang sampai frame yang mengalami kesalahan diterima dengan benar. Jadi, stasiun sumber, bila menerima REJ, harus melakukan retransniisi terhadap frame yang mengalami kesalahan tersebut plus semua frame pengganti yang ditransmisikan sementara.
• Berdasarkan pada sliding window
• Jika tidak ada error, ACK seperti biasanya dengan frame berikutnya diharapkan
• Menggunakan window untuk mengontrol jumlah frame-frame yang tidak diketahui
• Jika error, kirim balik dengan rejection
 Buang frame tsb dan semua frame yang akan tiba sampai frame yang salah diterima kembali dengan benar
 Transmitter harus go back dan mengirim ulang frame tsb dan semua frame yang berdekatan berikutnya
Go Back N - Frame yang rusak
• Receiver mendeteksi error didalam frame i
• Receiver mengirimkan rejection-i
• Transmitter mengambil rejection-i
• Transmitter mengirim ulang frame i dan semua deretannya
3. Selective reject

Dengan selective-reject ARQ, frame-frame yang hanya diretransmisikan adalah frame-frame yang menerima balasan negatif, dalam hal ini disebut SREJ atau frame-frame yang waktunya sudah habis. Gambar di posting ini menyajikan ilustrasi skema ini. Bila frame 5 diterima rusak, B mengirim SREJ 4, yang berarti frame 4 tidak diterima. Selanjutnya, B berlanjut dengan menerima frame-frame yang datang dan menahan mereka sampai frame 4 yang valid diterima. Dalam. hal ini, B dapat meletakkan frame sesuai pada tempatnya agar bisa dikirim ke software pada lapisan yang lebih tinggi.

Selective Reject lebih efisien dibanding go-back-N, karena selective reject meminimalkan jumlah retransmisi. Dengan kata lain, receiver harus mempertahankan penyangga sebesar mungkin untuk menyimpan tempat bagi frame SREJ sampai frame yang rusak diretransmisi, serta harus memuat logika untuk diselipkan kembali frame tersebut pada urutan yang tepat. Selain itu, transrrdtter juga memerlukan logika yang lebih kompleks agar mampu mengirimkan frame diluar urutan. Karena komplikasi semacam itu, selective-reject ARQ tidak terlalu banyak dipergunakan dibanding go-back N ARQ.

Batas ukuran jendela lebih terbatas untuk selective-reject daripada go-back-N. Amati kasus ukuran nomor urut 3-bit untuk selective reject. Dengan ukuran jendela sebesar tujuh, Ialu amati skenario berikut:
1. Stasiun A mengirim frame 0 melalui 6 menuju stasiun B
2. Stasiun B menerima ketujuh frame dan membalasnya secara komulatif dengan RR7.
3. karena adanya derau besar, RR7 menghilang.
4. Waktu habis dan mentransmisikan frame 0 kembali.
5. B memajukan jendela penerimanya agar menerima frame 7, 0, 1, 2, 3, 4, dan 5. Jadi diasumsikan bahwa frame 7 sudah hilang dan berarti pula ini merupakan frame 0 yang baru diterimanya.

• Disebut juga “selective retransmission”
• Hanya frame-frame yang ditolak yang dikirim ulang
• Frame-frame bagian deretannya diterima oleh receiver dan disimpan di buffer
• Meminimalkan retransmission
• Receiver harus mengelola buffer yang cukup besar
• Login yang lebih kompleks didalam transmitter







sumber http://catatan-yushiku.blogspot.com/2011/01/tugas-komunikasi-data-teknik-encoding.html

Tidak ada komentar:

Posting Komentar