Jumat, 04 Mei 2012

ASCII





ASCII

Kode Standar Amerika untuk Pertukaran Informasi atau ASCII (American Standard Code for Information Interchange) merupakan suatu standar internasional dalam kode huruf dan simbol seperti Hex dan Unicode tetapi ASCII lebih bersifat universal, contohnya 124 adalah untuk karakter "|". Ia selalu digunakan oleh komputer dan alat komunikasi lain untuk menunjukkan teks. Kode ASCII sebenarnya memiliki komposisi bilangan biner sebanyak 8 bit. Dimulai dari 0000 0000 hingga 1111 1111. Total kombinasi yang dihasilkan sebanyak 256, dimulai dari kode 0 hingga 255 dalam sistem bilangan Desimal.

Tabel Karakter ASCII

Tabel berikut berisi karakter-karakter ASCII . Dalam sistem operasi Windows dan MS-DOS, pengguna dapat menggunakan karakter ASCII dengan menekan tombol Alt+[nomor nilai ANSI (desimal)]. Sebagai contoh, tekan kombinasi tombol Alt+87 untuk karakter huruf latin "W" kapital.
Karakter Nilai Unicode
(heksadesimal)
Nilai ANSI ASCII
(desimal)
Keterangan
NUL 0000 0 Null (tidak tampak)
SOH 0001 1 Start of heading (tidak tampak)
STX 0002 2 Start of text (tidak tampak)
ETX 0003 3 End of text (tidak tampak)
EOT 0004 4 End of transmission (tidak tampak)
ENQ 0005 5 Enquiry (tidak tampak)
ACK 0006 6 Acknowledge (tidak tampak)
BEL 0007 7 Bell (tidak tampak)
BS 0008 8 Menghapus satu karakter di belakang kursor (Backspace)
HT 0009 9 Horizontal tabulation
LF 000A 10 Pergantian baris (Line feed)
VT 000B 11 Tabulasi vertikal
FF 000C 12 Pergantian baris (Form feed)
CR 000D 13 Pergantian baris (carriage return)
SO 000E 14 Shift out (tidak tampak)
SI 000F 15 Shift in (tidak tampak)
DLE 0010 16 Data link escape (tidak tampak)
DC1 0011 17 Device control 1 (tidak tampak)
DC2 0012 18 Device control 2 (tidak tampak)
DC3 0013 19 Device control 3 (tidak tampak)
DC4 0014 20 Device control 4 (tidak tampak)
NAK 0015 21 Negative acknowledge (tidak tampak)
SYN 0016 22 Synchronous idle (tidak tampak)
ETB 0017 23 End of transmission block (tidak tampak)
CAN 0018 24 Cancel (tidak tampak)
EM 0019 25 End of medium (tidak tampak)
SUB 001A 26 Substitute (tidak tampak)
ESC 001B 27 Escape (tidak tampak)
FS 001C 28 File separator
GS 001D 29 Group separator
RS 001E 30 Record separator
US 001F 31 Unit separator
SP 0020 32 Spasi
 ! 0021 33 Tanda seru (exclamation)
" 0022 34 Tanda kutip dua
# 0023 35 Tanda pagar (kres)
$ 0024 36 Tanda mata uang dolar
 % 0025 37 Tanda persen
& 0026 38 Karakter ampersand (&)
0027 39 Karakter Apostrof
( 0028 40 Tanda kurung buka
) 0029 41 Tanda kurung tutup
* 002A 42 Karakter asterisk (bintang)
+ 002B 43 Tanda tambah (plus)
, 002C 44 Karakter koma
- 002D 45 Karakter hyphen (strip)
. 002E 46 Tanda titik
/ 002F 47 Garis miring (slash)
0 0030 48 Angka nol
1 0031 49 Angka satu
2 0032 50 Angka dua
3 0033 51 Angka tiga
4 0034 52 Angka empat
5 0035 53 Angka lima
6 0036 54 Angka enam
7 0037 55 Angka tujuh
8 0038 56 Angka delapan
9 0039 57 Angka sembilan
 : 003A 58 Tanda titik dua
 ; 003B 59 Tanda titik koma
< 003C 60 Tanda lebih kecil
= 003D 61 Tanda sama dengan
> 003E 62 Tanda lebih besar
 ? 003F 63 Tanda tanya
@ 0040 64 A keong (@)
A 0041 65 Huruf latin A kapital
B 0042 66 Huruf latin B kapital
C 0043 67 Huruf latin C kapital
D 0044 68 Huruf latin D kapital
E 0045 69 Huruf latin E kapital
F 0046 70 Huruf latin F kapital
G 0047 71 Huruf latin G kapital
H 0048 72 Huruf latin H kapital
I 0049 73 Huruf latin I kapital
J 004A 74 Huruf latin J kapital
K 004B 75 Huruf latin K kapital
L 004C 76 Huruf latin L kapital
M 004D 77 Huruf latin M kapital
N 004E 78 Huruf latin N kapital
O 004F 79 Huruf latin O kapital
P 0050 80 Huruf latin P kapital
Q 0051 81 Huruf latin Q kapital
R 0052 82 Huruf latin R kapital
S 0053 83 Huruf latin S kapital
T 0054 84 Huruf latin T kapital
U 0055 85 Huruf latin U kapital
V 0056 86 Huruf latin V kapital
W 0057 87 Huruf latin W kapital
X 0058 88 Huruf latin X kapital
Y 0059 89 Huruf latin Y kapital
Z 005A 90 Huruf latin Z kapital
[ 005B 91 Kurung siku kiri
\ 005C 92 Garis miring terbalik (backslash)
] 005D 93 Kurung sikur kanan
^ 005E 94 Tanda pangkat
_ 005F 95 Garis bawah (underscore)
` 0060 96 Tanda petik satu
a 0061 97 Huruf latin a kecil
b 0062 98 Huruf latin b kecil
c 0063 99 Huruf latin c kecil
d 0064 100 Huruf latin d kecil
e          0065 101 Huruf latin e kecil
f          0066 102 Huruf latin f kecil
g          0067 103 Huruf latin g kecil
h          0068 104 Huruf latin h kecil
i          0069 105 Huruf latin i kecil
j         006A 106 Huruf latin j kecil
k         006B 107 Huruf latin k kecil
l         006C 108 Huruf latin l kecil
m 006D 109 Huruf latin m kecil
n 006E 110 Huruf latin n kecil
o 006F 111 Huruf latin o kecil
p 0070 112 Huruf latin p kecil
q 0071 113 Huruf latin q kecil
r 0072 114 Huruf latin r kecil
s 0073 115 Huruf latin s kecil
t 0074 116 Huruf latin t kecil
u 0075 117 Huruf latin u kecil
v 0076 118 Huruf latin v kecil
w 0077 119 Huruf latin w kecil
x 0078 120 Huruf latin x kecil
y 0079 121 Huruf latin y kecil
z 007A 122 Huruf latin z kecil
{ 007B 123 Kurung kurawal buka
¦ 007C 124 Garis vertikal (pipa)
} 007D 125 Kurung kurawal tutup
~ 007E 126 Karakter gelombang (tilde)
DEL 007F 127 Delete

0080 128 Dicadangkan

0081 129 Dicadangkan

0082 130 Dicadangkan

0083 131 Dicadangkan
IND 0084 132 Index
NEL 0085 133 Next line
SSA 0086 134 Start of selected area
ESA 0087 135 End of selected area

0088 136 Character tabulation set

0089 137 Character tabulation with justification

008A 138 Line tabulation set
PLD 008B 139 Partial line down
PLU 008C 140 Partial line up

008D 141 Reverse line feed
SS2 008E 142 Single shift two
SS3 008F 143 Single shift three
DCS 0090 144 Device control string
PU1 0091 145 Private use one
PU2 0092 146 Private use two
STS 0093 147 Set transmit state
CCH 0094 148 Cancel character
MW 0095 149 Message waiting

0096 150 Start of guarded area

0097 151 End of guarded area

0098 152 Start of string

0099 153 Dicadangkan

009A 154 Single character introducer
CSI 009B 155 Control sequence introducer
ST 009C 156 String terminator
OSC 009D 157 Operating system command
PM 009E 158 Privacy message
APC 009F 158 Application program command

00A0 160 Spasi yang bukan pemisah kata
¡ 00A1 161 Tanda seru terbalik
¢ 00A2 162 Tanda sen (Cent)
£ 00A3 163 Tanda Poundsterling
¤ 00A4 164 Tanda mata uang (Currency)
¥ 00A5 165 Tanda Yen
¦ 00A6 166 Garis tegak putus-putus (broken bar)
§ 00A7 167 Section sign
¨ 00A8 168 Diaeresis
© 00A9 169 Tanda hak cipta (Copyright)
ª 00AA 170 Feminine ordinal indicator
« 00AB 171 Left-pointing double angle quotation mark
¬ 00AC 172 Not sign
­ 00AD 173 Tanda strip (hyphen)
® 00AE 174 Tanda merk terdaftar
¯ 00AF 175 Macron
° 00B0 176 Tanda derajat
± 00B1 177 Tanda kurang lebih (plus-minus)
² 00B2 178 Tanda kuadrat (pangkat dua)
³ 00B3 179 Tanda kubik (pangkat tiga)
´ 00B4 180 Acute accent
µ 00B5 181 Micro sign
00B6 182 Pilcrow sign
· 00B7 183 Middle dot






sumber http://id.wikipedia.org/wiki/ASCII

TEKNIK ENCODING

A. Teknik Encoding
1. Non return to zero level (NRZ-L) : aitu suatu kode dimana tegangan negatif dipakai untuk mewakili suatu binary dan tegangan positif dipakai untuk mewakili binary lainnya.
• Dua tegangan yang berbeda antara bit 0 dan bit 1
• Tegangan konstan selama interval bit
• Tidak ada transisi yaitu tegangan no return to zero
Contoh:
• Lebih sering, tegangan negatif untuk satu hasil dan tegangan positif untuk yang lain
• Ini adalah NRZ-L
2. Nonreturn to Zero Inverted (NRZI ): yaitu suatu kode dimana suatu transisi (low ke high atau high ke low) pada awal suatu bit time akan dikenal sebagai binary ’1′ untuk bit time tersebut; tidak ada transisi berarti binary ’0′. Sehingga NRZI merupakan salah satu contoh dari differensial encoding.
• Nonreturn to Zero Inverted (NRZI) dalam kesatuan
• Pulsa tegangan konstan untuk durasi bit
• Data dikodekan / diterjemahkan sebagai kehadiran(ada) atau ketiadaan sinyal transisi saat permulaan bit time
• Transisi (dari rendah ke tinggi atau tinggi ke rendah) merupakan biner 1
• Tidak ada transisi untuk biner 0
• Sebagai contoh encoding differential

3. Bipolar with 8-Zeros Substitution (B8ZS) yaitu suatu kode dimana :
• jika terjadi oktaf dari semua nol dan pulsa tegangan terakhir yang mendahului oktaf ini adalah positif, maka 8 nol dari oktaf tersebut di-encode sebagai 000+ -0- +
• jika terjadi oktaf dari semua nol dan pulsa tegangan terakhir yang mendahului oktaf ini adalah negatif, maka 8 nol dari oktaf tersebut di-encode sebagai 000-+0+ -.
• Penggantian Bipolar With 8 Zeros
• Didasarkan pada bipolar-AMI
• Jika octet pada semua zero dan pulsa terakhir tegangan yang terdahulu adalah encode positif sebagai 000+-0-+
• Jika octet pada semua zero dan pulsa terakhir tegangan yang terdahulu adalah encode negatif sebagai 000-+0+-
• Karena dua pelanggaran pada kode AMI
• Tidak mungkin untuk terjadi seperti hasil noise
• Receiver mendeteksi dan menerjemahkan seperti octed pada semua zero
• Penggunaan Scrambling untuk menggantikan rangkaian yang menghasilkan tegangan konstan.
• Rangkaian Filling
o Harus cukup menghasilkan transisi untuk sinkronisasi
o Harus dapat diakui oleh receiver dan digantikan dengan yang asli
o Panjang sama dengan yang asli
• Tidak ada komponen dc
• Tidak ada rangkaian panjang pada saluran sinyal level zero
• Tidak ada penurunan pada kecepatan data
• Kemampuan pendeteksian error
4. High-density bipolar-3 zeros (HDB3):yaitu suatu kode dimana menggantikan stringstring dari 4 nol dengan rangkaian yang mengandung satu atau dua pulsa atau disebut kode violation, jika violation terakhir positive maka violation ini pasti negative dan sebaliknya (lihat tabel).
• Kepadatan tinggi Bipolar 3 Zeros
• Didasarkan pada bipolar-AMI
• String pada empat zero digantikan dengan satu atau dua pulsa

B. Pendeteksi Error
1. Bit Parity
Deteksi bit error yang paling sederhana parity bit pada akhir tiap word dalam frame. Terdapat dua jenis parity bit ini :
• Even parity : jumlah dari binary '1' yang genap --> dipakai untuk transmisi asynchronous.
• Odd parity : jumlah dari binary '1' yang ganjil --> dipakai untuk transmisi synchronous.
Atau menggunakan operasi exclusive-OR dari bit-bit tersebut dimana akan menghasilkan binary '0' untuk even parity dan menghasilkan binary '1' untuk odd parity.
Catatan :
• exclusive-OR dari 2 digit binary adalah 0 bila kedua digitnya adalah 0 atau keduanya = 1; jika digitnya beda maka hasilnya = 1.
Problem dari parity bit :
• Impulse noise yang cukup panjang merusak lebih dari satu bit, pada data rate yang tinggi.
2. CYCLIC REDUNDANCY CHECKS (CRC)
Diberikan suatu k-bit frame atau message, transmitter membentuk serangkaian n-bit, yang dikenal sebagai frame check sequence (FCS). Jadi frame yang dihasilkan terdiri dari k+n bits. Receiver kemudian membagi frame yang datang dengan beberapa angka dan jika tidak ada remainder (sisa) dianggap tidak ada error.
Beberapa cara yang menjelaskan prosedur diatas, yaitu :
a. Modulo 2 arithmetic
Menggunakan penjumlahan binary dengan tanpa carry, dimana hanya merupakan operasi exclusive-OR.
b. Polynomials
Dalam bentuk variabel x dengan koef isien-koefisien binary. Koefisien-koefisien tersebut berhubungan dengan bit -bit dalam binary sehingga proses CRC-nya dapat dijabarkan sebagai :
1. X M(X) = Q(X) + R(X)
--------- ---------------
P(X) P(X)
2. T(X) = X M(X)+ R(X)
Error E(X) hanya tidak akan terdeteksi bila dapat dibagi dengan P(X). Error-error yang dapat dideteksi yang tidak dapat dibagi oleh P(X) :
 Semua error bit tunggal.
 Semua error bit ganda, sepanjang P(X) mempunyai faktor paling sedikit 3 syarat.
 Jumlah error genap apapun, sepanjang P(X) mengandung faktor (X + 1).
 Burst error apapun dengan panjang burst lebih kecil daripada panjang FCS.
 Burst error yang paling besar.
C. Automatic Repeat Request (ARQ)
1. Stop-and-Wait ARQ
Stop-and-Wait ARQ didasarkan atas teknik flow control stop-and-wait. Stasiun source mentransmisikan sebuah frame tunggal dan kemudian harus menunggu balasan berupa acknowledgement (ACK). Tidak ada frame yang dikirim sampai jawaban dari stasiun tujuan tiba di stasiun sumber.

Ada dua jenis kesalahan yang dapat terjadi. Pertama, frame yang tiba di tujuan bisa mengalami kerusakan. Receiver mendeteksi kerusakan tersebut dengan menggunakan teknik pendeteksian kesalahan yang berkaitan dengan pembuangan frame lebih awal. Untuk menghitung kemungkinan ini, stasiun sumber dilengkapi dengan sebuah pencatat waktu. Setelah frame ditransmisikan/stasiun sumber menunggu balasan. Bila tidak ada balasan yang diterima sampai waktu yang ditentukan pencatat habis, maka akan dikirimkan frame yang sama. perhatikan bahwa metode ini mengharuskan transmitter mempertahankan tiruan frame yang ditransmisikan sampai balasan diterima oleh frame tersebut.

Jenis kesalahan yang kedua adalah kerusakan pada balasan. Amati situasi berikut. Stasiun A mengirim, sebuah frame. Frame ini diterima dengan baik oleh stasiun B, yang meresponnya dengan memberi balasan (ACK). ACK mengalami kerusakan saat singgah dan tidak diakui oleh A, yang karenanya keluar dari jalur waktu dan kembali mengirim frame yang sama. Duplikat frame ini tiba dan diterima oleh B. Dengan begitu B menerima dua duplikat frame yang sama seolah-olah keduanya terpisah. Untuk mengatasi problem ini, frame bergantian diberi label 0 atau 1, dan balasan positifnya dalam bentuk ACK 0 dan ACK 1. Sesuai dengan aturan jendela penggeseran, ACK 0 membalas penerimaan frame bernomor 1 dan menunjukkan bahwa receiver siap untuk frame bemomor 0.

Gambar diatas dalam posting ini memberi contoh penggunaan stop-and-wait ARQ, menunjukkan transmisi deretan frame dari sumber A menuju tujuan B. Gambar tersebut juga menunjukkan kedua jenis kesalahan yang baru saja digambarkan. Frame ketiga yang ditransmisikan oleh A hilang atau rusak dan karenanya tidak ada ACK yang dikembalikan oleh B. A mengalami time out dan kembali mentransn-dsikan frame yang sama. Saat B menerima dua frame dalam sebuah barisan dengan label yang sama, B membuang frame kedua namun mengirimkan ACK0 kembah ke masing-masing stasiun.

Kelebihan stop-and-wait ARQ adalah kesederhanaannya. Sedang kekurangannya, dibahas di bagian flow control, karena stop-and-wait ARQ ini merupakan mekanisme yang tidak efisien. Oleh karena itu teknik kontrol arus sliding window dapat diadaptasikan agar diperoleh pengunaan jalur yang lebih efisien lagi; dalam konteks ini, kadang-kadang disebut juga dengan ARQ yang kontinyu.
 Source mengirimkan frame tunggal
 Wait untuk ACK
 Jika frame yang diterima rusak, dibuang
a. Transmitter menjalani timeout
b. Jika tidak ada ACK selama timeout, kirim ulang
 Jika ACK rusak,transmitter tidak akan mengenalinya
a. Transmitter akan mengirim ulang
b. Receiver mengambil dua copy dari frame
c. Menggunakan ACK0 dan ACK1
2. Go-Back-N ARQ
Bentuk pengkontrolan kesalahan didasarkan atas teknik kontrol arus sliding window yang biasa disebut juga dengan Go-back-N ARQ. Dalam metode ini, stasiun bisa mengirim deretan frame yang diurutkan berdasarkan suatu modulo bilangan. Jumlah frame balasan yang ada ditentukan oleh ukuran jendela, menggunakan teknik kontrol arus jendela penggeseran. Bila tidak terjadi suatu. kesalahan, stasiun tujuan akan membalas (RR = Receive Ready, atau piggybacked Acknowledgement) frame yang datang seperti biasa. Bila stasiun tujuan mendeteksi suatu kesalahan pada sebuah frame, stasiunt tujuan mengirim balasan negatif (REJ = reject) untuk frame tersebut. Stasiun tujuan kemudian membuang frame itu dan semua frame-frame yang nantinya akan datang sampai frame yang mengalami kesalahan diterima dengan benar. Jadi, stasiun sumber, bila menerima REJ, harus melakukan retransniisi terhadap frame yang mengalami kesalahan tersebut plus semua frame pengganti yang ditransmisikan sementara.
• Berdasarkan pada sliding window
• Jika tidak ada error, ACK seperti biasanya dengan frame berikutnya diharapkan
• Menggunakan window untuk mengontrol jumlah frame-frame yang tidak diketahui
• Jika error, kirim balik dengan rejection
 Buang frame tsb dan semua frame yang akan tiba sampai frame yang salah diterima kembali dengan benar
 Transmitter harus go back dan mengirim ulang frame tsb dan semua frame yang berdekatan berikutnya
Go Back N - Frame yang rusak
• Receiver mendeteksi error didalam frame i
• Receiver mengirimkan rejection-i
• Transmitter mengambil rejection-i
• Transmitter mengirim ulang frame i dan semua deretannya
3. Selective reject

Dengan selective-reject ARQ, frame-frame yang hanya diretransmisikan adalah frame-frame yang menerima balasan negatif, dalam hal ini disebut SREJ atau frame-frame yang waktunya sudah habis. Gambar di posting ini menyajikan ilustrasi skema ini. Bila frame 5 diterima rusak, B mengirim SREJ 4, yang berarti frame 4 tidak diterima. Selanjutnya, B berlanjut dengan menerima frame-frame yang datang dan menahan mereka sampai frame 4 yang valid diterima. Dalam. hal ini, B dapat meletakkan frame sesuai pada tempatnya agar bisa dikirim ke software pada lapisan yang lebih tinggi.

Selective Reject lebih efisien dibanding go-back-N, karena selective reject meminimalkan jumlah retransmisi. Dengan kata lain, receiver harus mempertahankan penyangga sebesar mungkin untuk menyimpan tempat bagi frame SREJ sampai frame yang rusak diretransmisi, serta harus memuat logika untuk diselipkan kembali frame tersebut pada urutan yang tepat. Selain itu, transrrdtter juga memerlukan logika yang lebih kompleks agar mampu mengirimkan frame diluar urutan. Karena komplikasi semacam itu, selective-reject ARQ tidak terlalu banyak dipergunakan dibanding go-back N ARQ.

Batas ukuran jendela lebih terbatas untuk selective-reject daripada go-back-N. Amati kasus ukuran nomor urut 3-bit untuk selective reject. Dengan ukuran jendela sebesar tujuh, Ialu amati skenario berikut:
1. Stasiun A mengirim frame 0 melalui 6 menuju stasiun B
2. Stasiun B menerima ketujuh frame dan membalasnya secara komulatif dengan RR7.
3. karena adanya derau besar, RR7 menghilang.
4. Waktu habis dan mentransmisikan frame 0 kembali.
5. B memajukan jendela penerimanya agar menerima frame 7, 0, 1, 2, 3, 4, dan 5. Jadi diasumsikan bahwa frame 7 sudah hilang dan berarti pula ini merupakan frame 0 yang baru diterimanya.

• Disebut juga “selective retransmission”
• Hanya frame-frame yang ditolak yang dikirim ulang
• Frame-frame bagian deretannya diterima oleh receiver dan disimpan di buffer
• Meminimalkan retransmission
• Receiver harus mengelola buffer yang cukup besar
• Login yang lebih kompleks didalam transmitter







sumber http://catatan-yushiku.blogspot.com/2011/01/tugas-komunikasi-data-teknik-encoding.html

Kamis, 03 Mei 2012

Byte dan Bit


Beberapa satuan standar transfer data yang sering dipergunakan dalam jaringan komputer adalah :

Bit :
Bit adalah ukuran terkecil data dalam sebuah komputer. Bit biasanya hanyalah merupakan pilihan antara 0 dan 1. Dimana 0 biasanya berarti ‘Off’ dan 1 berarti ‘On’. Pada akhirnya komputer akan mengkombinasikan kedua pilihan tersebut menjadi format digital yang lebih kompleks untuk merepresentasikan data.
istilah Bit mulai diperkenalkan oleh seorang statistik terkenal John Tukey pada tahun 1946 .
 
bps:
bit per second. Jumlah bit yang ditransfer dalam satu detik.

kbps :
kilo bits per second. Jumlah kilobits yang ditransfer dalam satu detik.
1 kbps = 1 x 10^3 bit/second = 1000 bit/second.

Byte :
Byte adalah merupakan kumpulan beberapa bit (1 Byte = 8 bit ). Byte biasanya merepresentasikan sebuah karakter (Misalkan seperti A, ?, -, dll). Karakter ini bisa berupa huruf, angka ataupun simbol tertentu.

Bps :
Byte per second. Jumlah byte yang ditransfer dalam satu detik.

KBps:
Kilo Byte per second. Jumlah KiloByte yang ditransfer dalam satu detik.
1 KBps = 1 x 2^10 byte/second = 1,024 byte/second

bit mempergunakan satuan desimal oleh sebab itu :

1 kilobit = 1 x 10^3 bit = 1000 bit

sedangkan byte mempergunakan satuan biner, oleh sebab itu :

1 KiloByte = 1 x 2^10 = 1024 Byte.

Berikut ini satuan Byte lainnya:

1 byte = 8 bits
1 kilobyte (K / KB) = 2^10 bit= 1,024 bytes
1 megabyte (M / MB) = 2^20 bit = 1,048,576 bytes
1 gigabyte (G / GB) = 2^30 bit = 1,073,741,824 bytes
1 terabyte (T / TB) = 2^40 bit = 1,099,511,627,776 bytes
1 petabyte (P / PB) = 2^50 bit = 1,125,899,906,842,624 bytes
1 exabyte (E / EB) = 2^60 bit = 1,152,921,504,606,846,976 bytes

Huruf "K" (huruf k besar) dipergunakan untuk satuan KiloByte, sedangkan
huruf "k" (huruf k kecil) untuk satuan kilobit.

Contoh perhitungan Byte dan Bit.
Misalkan anda memiliki sebuah file yang terdiri dari 100.000 kata dan anda ingin tahu berapa lama kita bisa mendownload file tersebut melalui internet yang memiliki koneksi 33.600 bps.
  • Asumsikan dalam setiap kata terdiri dari 5 huruf/karakter. Berarti jika ada 100.000 kata, maka anda memiliki 500.000 huruf/karakter
  • Setiap karakter terdiri dari 1 Byte, berarti anda memiliki 500.000 Byte
  • Setiap Byte terdiri dari 8 bit, berarti 500.000 Byte yang anda miliki bernilai 500.000 x 8 = 4.000.000 bit
  • Selanjutnya 4.000.000 bit yang anda miliki dibagi dengan 33.600 = 119 detik
  • Artinya waktu anda untuk mendownload file yang memiliki 100.000 kata kurang lebih 119 detik (2 menit) dengan kecepatan akses 33.600 bps
Dalam jaringan komputer, biasanya Byte dan bit dipakai utk menggambarkan kecepatan transfer/download data.

Satuan
KBps (KiloByte/second) dipakai jika data di sini secara umum memakai Byte untuk satuannya (contohnya seperti protokol-protokol yang ada pada level aplikasi seperti http,ftp,smtp,dsb).

Sedangkan
kbps (kilobit/second) dipakai jika data yang ditransfer memakai bit untuk satuannya (contohnya adalah protokol-protokol layer 2 ke bawah seperti ethernet yang mentransfer data dalam frame-frame).

Itu sebabnya kecepatan sebuah modem tertulis = 33.6 kb/s (karena modem termasuk dalam protokol layer 2 kebawah seperti halnya ethernet), sedangkan saat kita mendownload sebuah file, maka browser akan memperlihatkan (misal) 3 KB/s (karena browser terkoneksi dengan protokol http/ftp).



http://dgk.or.id/archives/2005/06/18/antara-byte-dan-bit/